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Abstract 

In electrostatics, Laplace’s equation can be used with appropriate boundary conditions to 

find the potential in a region free of charge or with steady current. The electric potential for four 

separate two-dimensional configurations of conductors was measured in a homogenous, 

conductive medium and compared to the theoretical solution. A numerical relaxation method 

was also used to compare the measured potential. In the regions where the theoretical models 

were valid, the measured potentials were within one to two deviations of the theoretical potential 

uncertainties for each configuration. The numerical solutions had large deviations around areas 

of sharp changes in potential and had relative errors of 10 to 100 percent of the measured 

potential in many regions. The analytic models can be further adjusted to account for limitations 

in the physical configuration, and the numerical methods can be further optimized to handle both 

large and small features of the configuration. 

Introduction 

The electric potential fields were measured for a parallel plate capacitor, cylindrical 

capacitor, infinite plane with a line charge image and parallel plates with an insulator inserted. In 

regions where the potential can be analytically solved (ignoring edge effects), the theory was 

compared to the measured values in each configuration. Additionally, a numerical relaxation 

method was used with the corresponding boundary conditions to compare the numerical 

solutions of Laplace’s equation to the measured potential. Qualitative and quantitative 
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comparisons of the theoretical or numerical values and the actual measurements were  made 

using surface and contour plots. 

Theory 

In a region of steady current, the continuity equation implies that the current density is 

divergenceless, ∇ ∙ 𝐉 = 0. Thus, for a homogenous material that satisfies Ohm’s law, the electric 

field is also divergenceless [1]. So the electric potential satisfies Laplace’s equation in a 

homogenous material carrying a steady current [2]: 

 ∇2𝑉 = 0 (1) 

Solutions to Laplace’s equation can be found using techniques of separation of variables, 

symmetry arguments and other special techniques like the method of images. See the Appendix 

for the details of deriving these solutions. 

Parallel Plate Capacitor 

The infinite parallel plate capacitor is a well-known problem in electrostatics that can be 

solved exactly due to symmetry arguments. Suppose that the plates are parallel to the planes 

defined by 𝑦 = ± 𝑎
2
, where 𝑎 is the separation between the plates. Then the potential depends 

only on 𝑦 and has the solution to Laplace’s equation 

 𝑉(𝑦) = �𝑉0−𝑉1
𝑎
�𝑦 + 1

2
(𝑉0 + 𝑉1) (2a) 

where 𝑉2 and 𝑉1 are the potentials of the lower and upper plates, respectively. We can ground the 

lower plate so 𝑉1 = 0, and the solution becomes 

 𝑉(𝑦) = �𝑉0
𝑎
� 𝑦 + 𝑉0

2
 (2b) 

Cylindrical Capacitor 

The cylindrical or coaxial capacitor consists of two concentric cylindrical conductors of 

radii 𝑅0 < 𝑅1 for the inner and outer cylinders, respectively. The inner conductor is held at 
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potential 𝑉0, and the outer conductor is held at potential 𝑉1. Due to the cylindrical symmetry, the 

potential is independent of the azimuthal angle and depends only on the radial distance from the 

central axis. The solution in all regions is given by 

 𝑉(𝑟) = �

𝑉0, 𝑟 < 𝑅0
𝑉0 ln𝑅1−𝑉1 ln𝑅0

ln�𝑅1𝑅0
�

+ 𝑉0−𝑉1
ln�𝑅0𝑅1

�
ln 𝑟 ,𝑅0 < 𝑟 < 𝑅1

𝑉1, 𝑟 > 𝑅1

 (3a) 

where 𝑟 = �𝑥2 + 𝑦2. If we ground the outer conductor so that 𝑉1 = 0, this simplifies to 

 𝑉(𝑥, 𝑦) =

⎩
⎨

⎧
𝑉0, 𝑟 < 𝑅0

𝑉0
ln�𝑅0𝑅1

�
ln ��𝑥

2+𝑦2

𝑅1
� ,𝑅0 < 𝑟 < 𝑅1

0, 𝑟 > 𝑅1

 (3b) 

Line Charge Image 

One way of finding the solution to Laplace’s equation for particularly convenient 

geometries is to use the method of images, whereby image charges are placed outside of the 

volume of interest such that the boundary conditions of the original problem are satisfied. Then 

the potential inside the region of interest is uniquely defined and can be found using the charge 

distribution of real and image charges. One such geometry consists of a line charge parallel to an 

infinite grounded conducting plane, which has circular cylinder equipotential surfaces parallel to 

the line charge. Thus, defining a circular equipotential in the homogenous material at a given 

distance away from an infinite grounded plane is equivalent to placing an infinite line charge in 

the material. 

Suppose that the grounded plane is the 𝑦 = 0 plane (the 𝑥𝑧 plane), and that the circular 

equipotential at voltage 𝑉0 is centered at (0, 𝑦0, 0) with radius 0 < 𝑅0 < 𝑦0. The potential 

function that satisfies these boundary conditions and thus Laplace’s equation is 
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 𝑉(𝑥, 𝑦) = 𝑉0
2asech�𝑅0𝑦0

�
ln�

𝑥2+�𝑦+�𝑦02−𝑅02�
2

𝑥2+�𝑦−�𝑦02−𝑅02�
2� (4) 

where 𝜀0 is the vacuum permittivity. 

Parallel Plates with Insulator 

Removing a portion of the conducting medium is equivalent to inserting an electrical 

insulator in that region. Placing an insulator or a dielectric material in the conducting medium 

has the effect of preventing current from flowing through the region of the dielectric. Thus, 

current is forced to flow around the dielectric, and charges in the dielectric will tend to move 

opposite of the external electric field, building up at the boundary of the dielectric. The result is 

that there tends to be a higher potential near the positive electrode and a lower potential near the 

negative electrode than if there were no dielectric present. In a homogenous, linear dielectric 

material, the bound volumetric charge density is proportional to the free volumetric charge 

density, so if no charge is embedded within the material, the material obeys Laplace’s equation 

[2]. At the boundary, however, surface charges may still exist. 

Apparatus and Methods 

The electric potential field for each configuration was mapped using the PASCO 

scientific MODEL PK-9023 Field Mapper set, which includes conductive paper, silver 

conductive ink pen, a corkboard surface and metallic pins. The conductive ink was drawn onto 

the paper and connected through the metallic pins to an Agilent E3610A power supply with a 

fixed potential of 𝑉0 = 10.025 V. Since the ink has nonzero resistance, the pins were arranged in 

a way that minimized the effects of the potential drop across the electrodes on the measurement 

of the potential. These effects, however, should be small since the resistance of the paper is 

roughly 5 to 6 orders of magnitude greater than the resistance of the ink. The electric potential 
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was then measured relative to the negative electrode with a Keithley Model 2000 DMM (input 

resistance of at least 10 GΩ) at relevant points on the conductive paper. The electrode 

configurations tested are shown in Figures 1 through 4. 
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Figure 1 Parallel plate capacitor configuration. The negative electrode is shown in thick black; the positive electrode is shown 
in thick red. The metallic pins on the electrodes are indicated by the small silver circles. Thick dotted lines indicate symmetry 
axes and the 𝑥𝑦 coordinate axes, while the intersections of thin dotted lines indicate measurement points and are separated by 
1 cm in both dimensions. Using symmetry, only the upper left quadrant of the parallel plate capacitor was measured, from which 
the rest of the measurements can be inferred. 
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Figure 2 Cylindrical capacitor configuration. The negative electrode is shown in thick black; the positive electrode is shown in 
thick red. The metallic pins on the electrodes are indicated by the small silver circles. Thick dotted lines indicate symmetry axes 
and/or the 𝑥𝑦 coordinate axes, while the intersections of thin dotted lines indicate measurement points and are radially separated 
by 1 cm or in some cases 0.5 cm. Using symmetry, only the left half of the cylindrical capacitor was measured, from which the 
rest of the measurements can be inferred. 
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Figure 3 Line charge image configuration. The negative electrode is shown in thick black; the positive electrode is shown in 
thick red. The metallic pins on the electrodes are indicated by the small silver circles. Thick dotted lines indicate symmetry axes 
and the 𝑥𝑦 coordinate axes, while the intersections of thin dotted lines indicate measurement points and are separated by 1 cm in 
both dimensions. 
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Figure 4 Insulating box configuration. The negative electrode is shown in thick black; the positive electrode is shown in thick 
red. The metallic pins on the electrodes are indicated by the small silver circles. Thick dotted lines indicate symmetry axes and 
the 𝑥𝑦 coordinate axes, while the intersections of thin dotted lines indicate measurement points and are separated by 1 cm in both 
dimensions. The insulator—a cut out of the conducting paper—is placed symmetrically between the plates, as shown in grey. 

Results and Analysis 

Two-dimensional curve fits were performed in regions where the potential could be 

analytically solved (ignoring edge effects) for each configuration. The fit parameters were then 

compared to the actual values used for each configuration. The curve fits for the cylindrical 

capacitor and parallel plate capacitor yielded parameter values that were close to the actual 

values but were either not within their uncertainties, or the uncertainties were unreasonably 

large. Of all configurations, the line charge configuration had the best agreement between the fit 

parameters and the actual values. A qualitative and quantitative comparison can be made using 

contour and surface plots that show the difference between measured values and theoretical 

values of either analytical models or numerical solutions found by finite difference methods. The 
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measured and numerically calculated potential fields were linearly or cubically interpolated to 

produce smoother surfaces for plotting. 

Due to the high accuracy of the Kiethley 2000 DMM, voltage measurement uncertainties 

were on the order of 0.1 mV, which corresponds to roughly 10−5 relative uncertainty in a typical 

measurement. Thus, most of the uncertainty is in the theoretical model due to uncertainty in the 

actual geometric parameters of the configurations. The uncertainty in each distance measurement 

was typically 2 mm (about the width of the conductive ink), producing typical relative 

uncertainties in the lengths of three percent or less. However, the uncertainties in the theoretical 

voltage based on these parameters ranged from about 50 mV to 500 mV, and the relative 

uncertainties ranged from one percent up to 70 percent. Typical relative uncertainties were 

around 10 percent throughout most of the plane, though. 

Parallel Plate Capacitor 

The linear fit parameters in Eq. 2b for the region between the parallel plates were 

𝑉0 = 9.4 ± 0.2 V and 𝑎 = 7.1 ± 0.2 cm, which are not within the uncertainty of the actual values 

of 𝑉0 = 10.025 V and 𝑎 = 6.0 cm. Figures 5 and 6 show the surface and contour plots of the 

measured potential with linear interpolation for the finite parallel plate capacitor. 
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Figure 5 Finite parallel plate capacitor potential field. The parallel plates are located at the sharp ridges, with the lower plate 
being groudned and the upper plate held at potential 𝑉0 = 10.025 V. The color (as well as the height) indicates the magnitude of 
the potential, with blue being small potential and red being large potential. 
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Figure 6 Contour plot for a finite parallel plate capacitor. The plates are located at 𝑦 = ±3 cm from 𝑥 = −7 cm to 𝑥 = 7 cm. 
A total of 24 equipotential contour lines are plotted, with dense contours indicating rapid changes in potential. 

Figure 7 shows the relative deviation between the measured potentials and the theoretical model 

within the plates of a parallel plate capacitor in terms of the uncertainty in the potential predicted 

by the model. Outside of the plates, the uncertainty with respect to the geometric parameters 

becomes zero, since the infinite parallel plate capacitor model predicts constant potentials inside 

this region. Thus, the relative deviation in this region is very large, so the absolute deviation 

between the measured and theoretical potentials is plotted in this region instead. 
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Figure 7 Relative deviation between theoretical and actual potentials for parallel plate capacitor. The units are in number 
of deviations relative to the uncertainty in the potential of the theoretical model. Within the plates, away from the edges (𝑥 =
±7 cm), the theoretical and measured values are usually within 2 deviations. Outside of the plates, the absolute deviation does 
not exceed 2 V. At 𝑦 = 0, the relative deviation increases drastically since the uncertainty in Eq 2b. is infinitesimal at 𝑦 = 0. 

Figures 8 through 10 show the numerical solutions to Laplace’s equation with the boundary 

conditions imposed by the parallel plates and their deviation with respect to the actual 

measurements. Comparing Figures 5 and 8 or 6 and 7 shows that the potential around the 

exterior region of the plates deviate significantly, but the region between the plates is nearly 

linear in the 𝑦 direction, as expected from Eq 2b. More explicitly, Figure 10 shows that the 

deviation within the plates is on the order of 500 mV while outside it is around 3 V, 

corresponding to roughly 10 to 100 percent relative error. 
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Figure 8 Surface plot of numerical solution to Laplace’s equation for the parallel plate capacitor. The solution area was 
initialized to a potential of 𝑉0

2
 and the upper plate and lower plates were fixed at 𝑉0 = 10.025 V and 0 V, respectively. 
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Figure 9 Contour plot of numerical solution to Laplace’s equation for the parallel plate capacitor. The solution area was 
initialized to a potential of 𝑉0

2
 and the upper plate and lower plates were fixed at 𝑉0 = 10.025 V and 0 V, respectively. 
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Figure 10 Absolute deviation between the numerical solution and measured potentials for the parallel plate capacitor. 

Cylindrical Capacitor 

In the region between the two cylinders, a curve fit to Eq. 3b produced parameters of 

𝑉0 = 9.82 V, 𝑅0 = 1.03 cm and 𝑅1 = 6.98 ± 0.01 cm compared to the actual values of 𝑉0 =

10.025 V, 𝑅0 = 1.0 cm and 𝑅1 = 7.0 cm. The uncertainties in the voltage and inner radius fit 

parameter were on the order of 1013 V and 105 cm, respectively, which are unrealistically large. 

The outer radius is within two standard deviations of the actual value, and the voltage and outer 

radius are both within three percent relative error. The contour and surface plots of the measured 

potentials for the cylindrical capacitor configuration are shown in Figures 11 and 12. 
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Figure 11 Cylindrical capacitor surface plot. The inner cylinder at potential 𝑉0 = 10.025 V is located at the tip of the thorn-
like peak, and the grounded outer cylder is located right at its base. The color (as well as the height) indicates the magnitude of 
the potential, with blue being small potential and red being large potential. 
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Figure 12 Contour plot for a cylindrical capacitor. The outer grounded conductor of radius 𝑅1 = 7 cm is near the dark blue 
ring, and the inner conductor of radius 𝑅0 = 1 cm is near the dark red ring. A total of 24 equipotential contour lines are plotted, 
with dense contours indicating rapid changes in potential. 

The relative deviation between the theoretical potentials and actual potentials between the two 

cylinders is shown in Figure 13. Outside of this region, Eq 3b model predicts constant potentials, 

which corresponds to zero uncertainty with respect to the geometric parameters. Thus, in the 

regions exterior to the cylindrical capacitor, the absolute deviation between the theoretical and 

measured values is plotted (on the same scale). 
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Figure 13 Relative deviation between theoretical and actual potentials for cylindrical capacitor. The units are in number of 
deviations relative to the uncertainty in the potential of the theoretical model. Within the cylinders of radii 𝑅0 = 1 cm and 
𝑅1 = 7 cm, the theoretical and measured potentials are nearly always within 2 deviations. Outside of this region, the cylindrical 
capacitor model predicts constant potentials, resulting in large relative deviations in these regions. The absolute deviations in 
these regions are typically less than 0.1 V. 

The numerical solution to the cylindrical capacitor potentials is shown in Figures 14 and 15, 

while the deviation compared to the measured potentials is shown in Figure 16. Examining 

Figure 16, the largest deviations are near the peak; Figure 14 shows that there are jagged 

outcrops in the peak, even after cubic interpolation. There is also a relatively large deviation 

around the outer cylinder, which is probably due to the smoothing effect that the relaxation 

method to solving Laplace’s equation has, causing the peak to be raised more around the base. 
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Figure 14 Surface plot of numerical solution to Laplace’s equation for the cylindrical plate capacitor. The solution area 
was initialized to a potential of 0 V outside the capacitor, 0.5𝑉0 between the cylinders and 1.1𝑉0 inside the inner cylinder, where 
𝑉0 = 10.025 V. The inner and outer cylinders themselves were fixed at 𝑉0 and 0, respectively. 
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Figure 15 Contour plot of numerical solution to Laplace’s equation for the cylindrical capacitor. The solution area was 
initialized to a potential of 0 V outside the capacitor, 0.5𝑉0 between the cylinders and 1.1𝑉0 inside the inner cylinder, where 
𝑉0 = 10.025 V. The inner and outer cylinders themselves were fixed at 𝑉0 and 0, respectively. 

20 



 

Figure 16 Absolute deviation between the numerical solution and measured potentials for the cylindrical plate capacitor. 

Line Charge Image 

The best fit parameters for Eq. 4 in the line charge image configuration were 𝑉0 =

11.8 V, 𝑦0 = 8.5 ± 0.1 cm and 𝑅0 = 0.53 cm compared to the actual values of 𝑉0 = 10.025 V, 

𝑦0 = 8.0 cm and 𝑅0 = 0.5 cm. The relative uncertainty of the separation and radius are both 

about six percent. Again the uncertainties in the voltage and radius were somewhat large at 15 V 

and 2 cm, respectively, which would suggest (unreasonably) that the voltage and radius could 

have been negative. Figures 17 and 18 show the potential surface and contour plots of the line 

charge image configuration. Figure 19 shows the relative deviation for the line charge image. 
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Figure 17 Line charge image surface plot. A circular equipotential of radius 𝑅0 = 0.5 cm and potential 𝑉0 = 10.025 V is 
placed a distance 𝑦0 = 8.0 cm away from a grounded infinite conducting plane at 𝑦 = 0. The color (as well as the height) 
indicates the magnitude of the potential, with blue being small potential and red being large potential. 
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Figure 18 Line charge image contour plot. The 0.5 cm radius equipotential is centered at (0,8) cm and maintains constant 
potential of 𝑉0 = 10.025 V. The grounded conducting plane is at 𝑦 = 0. A total of 24 equipotential contour lines are plotted, with 
dense contours indicating rapid changes in potential. 
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Figure 19 Relative deviation between theoretical and actual potentials for line charge image. The units are in number of 
deviations relative to the uncertainty in the potential of the theoretical model. The relative deviation between the theoretical 
model and measured potentials is typically less than 2 deviations (i.e. below 𝑦 = 8 cm). Closer to the grounded plane (𝑦 = 0), 
the deviation is even less and falls within a single deviation. 

Figures 20 and 21 show the numerical solutions to the line charge image configuration, and 

Figure 22 shows its deviation from the measured potentials. The largest absolute deviations 

occur near the peak around the equipotential, as shown by Figure 22. 
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Figure 20 Surface plot of numerical solution to Laplace’s equation for the line charge image. The solution area was 
initialized to a potential of 0.2𝑉0 everywhere except for the peak, which was initialized at 2𝑉0, where 𝑉0 = 10.025 V. Where the 
grid mesh intersected the circular equipotential, the potential was fixed at 𝑉0, and the plane along 𝑦 = 0 was fixed at 0. 
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Figure 21 Contour plot of numerical solution to Laplace’s equation for the line charge image. The solution area was 
initialized to a potential of 0.2𝑉0 everywhere except for the peak, which was initialized at 2𝑉0, where 𝑉0 = 10.025 V. Where the 
grid mesh intersected the circular equipotential, the potential was fixed at 𝑉0, and the plane along 𝑦 = 0 was fixed at 0. 
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Figure 22 Absolute deviation between the numerical solution and measured potentials for the line charge image. 

Parallel Plates with Insulator 

Developing an analytic model or proper boundary conditions for a numerical solution 

could not be achieved due to uncertainties in the boundary conditions and insufficient 

information (such as the dielectric constant of the conductive medium). The potential within the 

insulator was prohibitively difficult to measure, as it decrease almost monotonically or oscillated 

around the grounded potential; only the potential at the boundary could be reliably determined. 

Thus, Figures 23 and 24 show the surface and contour plots of the potential as measured in the 

conductive medium and use grounded potential placeholder values in the insulator. 
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Figure 23 Insulating box surface plot. A box of dimensions 6 cm in the 𝑥 direction and 4 cm in the 𝑦 direction, centered at the 
origin, is depected with zero potential inside since only the boundary potential could be reliably determined. The positive and 
negative electrodes have potentials of 𝑉0 = 10.025 V and 0 V, respectively, and are located along the front and back edges 
(𝑦 = ±6 cm) with lengths of 12 cm. The color (as well as the height) indicates the magnitude of the potential, with blue being 
small potential and red being large potential. 
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Figure 24 Insulating box contour plot. The insulating box spans from −3 cm < 𝑥 < 3 cm and −2 cm < 𝑦 < 2 cm with 
grounded potential placeholder values inside. The electrodes are at 𝑦 = ±6 cm and have lengths of 12 cm. A total of 24 
equipotential contour lines are plotted, with dense contours indicating rapid changes in potential. 

Discussion and Conclusions 

With the exception of the insulating box configuration, each of the configurations agreed 

within one to two deviations of the theoretical model potential in regions where the model was 

applicable. Qualitatively, the insulating box configuration behaved as expected, with smaller 

potential drops between the dielectric and the electrodes. The parallel plate capacitor had 

particularly large deviations on the edges and outside of the plates, where the theoretical model 

of an infinite parallel plate capacitor was no longer valid. A model (see e.g. [3,4]) which 

accounts for the strong electric fields on the edge of the plates would help to resolve this 
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discrepancy. The line charge image theoretical model also had very large deviations of 10 or 

more times its uncertainty from the measured value around the original circular equipotential. 

This is due to the theoretical model containing a pole that diverges logarithmically to infinity at 

the point where the line charge would be located. In the laboratory, we would not expect to 

measure such a diverging potential however, due to the finite dimensions of the experiment. 

The numerical solutions to Laplace’s equation were not quantitatively in close agreement 

with the measured values near sharp peaks and some of the boundaries, as can be seen in Figures 

10, 16 and 22. Varying step sizes and initialization values have profound effects on the solution 

results and convergence rates. For example, the parallel plate capacitor was initialized to a value 

of 0.5𝑉0, which did not change for most of the grid throughout the iteration. Using a larger step 

size would have propagated the boundary values more widely across the grid, resulting in a less 

uniform potential outside the plates. Additionally, the larger step sizes tended to converge faster, 

albeit with much less precision. Similarly, small step sizes would be better suited for computing 

values near sharp peaks, such as those in the cylindrical capacitor and line charge image 

configurations. However, computational memory limitations prevented smaller step sizes than 

were used. Thus, either the algorithm must be further optimized, additional computational 

resources obtained or the program rewritten in a more efficient computer language (e.g. C/C++). 

Summary 

The measured potentials agreed within one to two deviations of the theoretical model’s 

potentials in most of the regions where the model was valid for each configuration. 

Improvements to the analytic model that account for edge effects and the finite dimensions of the 

geometry, although significantly more complicated, could decrease the deviation and increase 

the extent of the agreement between the theoretical and measured potentials. The potential within 
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the insulator could not be reliably determined, and a theoretical comparison could not be made 

due to insufficient information. However, the qualitative behavior of the potential around the 

insulator was in agreement with expectations: regions around the insulator reduced the steady 

currents and resulted smaller potential drops than if the insulator were absent. The numerical 

solutions to Laplace’s equation agreed with the measured values in several regions of each 

configuration, but the solution and convergence rate depended heavily on the initialization of the 

method. Deviations of up to 100 percent were seen between the numerical solution and 

measured potential, with larger deviations observed near areas of rapid potential change. Further 

optimizations and experimentation with the initialization can be done to improve the relaxation 

method results. 
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Appendix: Solutions to Electrostatic Boundary Value Problems 

Parallel Plate Capacitor 

The infinite parallel plate capacitor with plates at 𝑦 = ± 𝑎
2
, where 𝑎 is the separation 

between the plates permits a solution of the form 𝑉 = 𝑉(𝑦) by symmetry. Substituting this into 

Laplace’s equation in Cartesian coordinates, 

∇2𝑉 = 0 ⇒ �
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+
𝜕2

𝜕𝑧2
�𝑉(𝑦) = 0 ⇒

d2𝑉(𝑦)
d𝑦2

= 0 

which has a general solution 𝑉(𝑦) = 𝐴𝑦 + 𝐵. The boundary conditions require that 
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�
𝑉 �−

𝑎
2
� = 𝑉1

𝑉 �
𝑎
2
� = 𝑉0

⇒ �
−
𝐴𝑎
2

+ 𝐵 = 𝑉2
𝐴𝑎
2

+ 𝐵 = 𝑉0
⇒ �

𝐵 =
1
2

(𝑉0 + 𝑉1)

𝐴 =
𝑉0 − 𝑉1
𝑎

 

where 𝑉1 and 𝑉0 are the potentials of the lower and upper plates, respectively. So the voltage 

between the plates of an infinite parallel plate capacitor is given by Eq. 2a as 

𝑉(𝑦) = �
𝑉0 − 𝑉1
𝑎

�𝑦 +
1
2

(𝑉0 + 𝑉1) 

Cylindrical Capacitor 

The cylindrical capacitor consists of two concentric cylindrical conductors of radii 

𝑅0 < 𝑅1 for the inner and outer cylinders, respectively. The inner conductor is held at potential 

𝑉0, and the outer conductor is held at potential 𝑉1. Due to the cylindrical symmetry, the potential 

is independent of the azimuthal angle and depends only on the radial distance from the central 

axis: 𝑉 = 𝑉(𝑟). Substituting this into Laplace’s equation in cylindrical coordinates, 

∇2𝑉 = 0 ⇒ �
1
𝑟
𝜕
𝜕𝑟
�𝑟

𝜕
𝜕𝑟
� +

1
𝑟2

𝜕2

𝜕𝜙2 +
𝜕2

𝜕𝑧2
�𝑉(𝑟) = 0 ⇒

1
𝑟

d
d𝑟
�𝑟

d𝑉(𝑟)
d𝑟

� = 0 

The general solution is 𝑉(𝑟) = 𝐴 + 𝐵 ln 𝑟. In the region for 𝑟 < 𝑅0, the boundary conditions 

require that the potential be finite everywhere, so 

�
|𝑉(0)| ≠ ∞
𝑉(𝑅0) = 𝑉0

⇒ �𝐵 = 0
𝐴 = 𝑉0

 

In the region for 𝑅0 < 𝑟 < 𝑅1, the boundary conditions are 

�𝑉
(𝑅0) = 𝑉0

𝑉(𝑅1) = 𝑉1
⇒ �𝐴 + 𝐵 ln𝑅0 = 𝑉0

𝐴 + 𝐵 ln𝑅1 = 𝑉1
⇒

⎩
⎪
⎨

⎪
⎧𝐴 =

𝑉0 ln𝑅1 − 𝑉1 ln𝑅0

ln �𝑅1𝑅0
�

𝐵 =
𝑉0 − 𝑉1

ln �𝑅0𝑅1
�

 

In the region for 𝑟 > 𝑅1, we again require that the potential be finite everywhere, so 
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�
|𝑉(∞)| ≠ ∞
𝑉(𝑅1) = 𝑉1

⇒ �𝐵 = 0
𝐴 = 𝑉1

 

Then the complete solution is 

 𝑉(𝑟) = �

𝑉0, 𝑟 < 𝑅0
𝑉0 ln𝑅1−𝑉1 ln𝑅0

ln�𝑅1𝑅0
�

+ 𝑉0−𝑉1
ln�𝑅0𝑅1

�
ln 𝑟 ,𝑅0 < 𝑟 < 𝑅1

𝑉1, 𝑟 > 𝑅1

 

where 𝑟 = �𝑥2 + 𝑦2. 

Line Charge Image 

The potential for the configuration with a single line charge running parallel to an 

infinite, grounded conducting plane can be solved using the method of images by placing an 

image line charge of opposite charge density an equal distance away on the other side of the 

plane. Suppose that a line charge of charge density 𝜆 is a distance 𝑦 = 𝑎 away from the 

conducting plane defined by 𝑦 = 0 (i.e. the 𝑥𝑧 plane) and that the line charge runs parallel to the 

𝑧 axis at 𝑥 = 0. Then an image line charge of charge density – 𝜆 is placed at 𝑦 = −𝑎 parallel to 

the 𝑧 axis at 𝑥 = 0 as well. From cylindrical symmetry, Gauss’s law can be used to calculate the 

electric field around a line charge: 

�𝐄 ∙ d𝐀
𝑆

=
𝑄
𝜀0
⇒ 𝐸(𝑟)�𝐫� ∙ d𝐀

𝑆
=

1
𝜀0
�𝜆(𝑙′)d𝑙′
𝐶

⇒ 𝐸(𝑟)�d𝐴
𝑆

=
1
𝜀0
𝜆𝐿 ⇒ 𝐸(𝑟)(2𝜋𝑟𝐿) =

1
𝜀0
𝜆𝐿

⇒ 𝐸(𝑟) =
1

2𝜋𝜀0
𝜆
𝑟
⇒ 𝐄(𝐫) = 𝐸(𝑟,𝜙, 𝑧) =

1
2𝜋𝜀0

𝜆
𝑟
𝐫� 

where 𝐫� points out from the line charge. 

Then the potential is defined by 𝑉(𝐫) = −∫ 𝐄 ∙ d𝐥𝐫
𝒪  where 𝒪 = (0,0,0), which 

corresponds to a radial displacement 𝑟 = 𝑎 in cylindrical coordinates from the line charge. Thus, 

𝑉(𝐫) = −� 𝐄(𝐥′) ∙ d𝐥′
𝐫

𝒪
= −�

1
2𝜋𝜀0

𝜆
𝑟′
𝐫� ∙ d𝑟′𝐫�

𝑟

𝑎
= −

𝜆
2𝜋𝜀0

[ln|𝑟′|]𝑎𝑟 =
𝜆

2𝜋𝜀0
ln �

𝑎
𝑟
� 
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The radial distance from the line charges is given by 𝑟± = �𝐫 − 𝐫±� = �𝑥2 + (𝑦 ∓ 𝑎)2, and we 

use superposition to write the potential due to each line charge: 

𝑉(𝐫) = 𝑉(𝑥,𝑦, 𝑧) = 𝑉−(𝐫) + 𝑉+(𝐫) =
−𝜆

2𝜋𝜀0
ln �

𝑎
𝑟−
� +

𝜆
2𝜋𝜀0

ln �
𝑎
𝑟+
� =

𝜆
2𝜋𝜀0

ln �
𝑟−
𝑟+
�

=
𝜆

2𝜋𝜀0
ln�

�𝑥2 + (𝑦 + 𝑎)2

�𝑥2 + (𝑦 − 𝑎)2
� =

𝜆
4𝜋𝜀0

ln�
𝑥2 + (𝑦 + 𝑎)2

𝑥2 + (𝑦 − 𝑎)2� 

The equipotential surfaces can then be found by setting 𝑉(𝐫) = 𝑉0, where 𝑉0 is the potential of 

that surface. The result is a function of 𝑥 and 𝑦 in terms of the parameters 𝑎, 𝜆 and 𝑉0 that 

defines equipotential surfaces that are circular cylinders centered at �0,𝑎 coth �2𝜋𝜀0𝑉0
𝜆

� , 𝑧� for all 

𝑧 ∈ ℝ and of radius 𝑅 = 𝑎 �csch �2𝜋𝜀0𝑉0
𝜆

��. 

Then defining a circular equipotential surface at voltage 𝑉0 and of radius 𝑅0 =

𝑎 �csch �2𝜋𝜀0𝑉0
𝜆

�� in the material at a distance 𝑦0 = 𝑎 coth �2𝜋𝜀0𝑉0
𝜆

� away from the plane defines 

the corresponding line charge location 𝑦 = 𝑎 and charge density 𝜆. This permits the solution 

given above for the voltage in the region of interest. To find 𝑎 and 𝜆, 

�
𝑦0 = 𝑎 coth �

2𝜋𝜀0𝑉0
𝜆

�

𝑅0 = 𝑎 �csch �
2𝜋𝜀0𝑉0
𝜆

��
⇒

⎩
⎪
⎨

⎪
⎧𝑎 = �𝑦02 − 𝑅02

𝜆 =
2𝜋𝜀0𝑉0

asech �𝑅0𝑦0
�

 

These solutions are valid provided that 0 < 𝑅0 < 𝑦0.  Thus, the potential in the region of interest 

is 

𝑉(𝐫) = 𝑉(𝑥, 𝑦) =
𝑉0

2 asech �𝑅0𝑦0
�

ln�
𝑥2 + �𝑦 + �𝑦02 − 𝑅02�

2

𝑥2 + �𝑦 − �𝑦02 − 𝑅02�
2� 
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