
Thermionic emission and Frank-Hertz oscillations 

Matthew Krupcale, Evan Telford 
Department of Physics, Case Western Reserve University, Cleveland Ohio, 44106-7079 

21 October 2012 

Abstract 

Charges emitted from a surface through thermionic emission have a current density that 

depends on the temperature of the material and its work function. Using thermionic emission, the 

work function for a tungsten filament was found from a linear fit to be 𝑒𝜙 = 3.13 ± 0.05 eV, in 

disagreement with the expected value of 4.5 eV. When electrons were emitted and accelerated 

from the cathode of a vacuum tube filed with mercury atom scattering centers, a periodicity was 

observed in the anode I-V characteristic, indicative of the excitation of mercury at discrete 

energies of 𝐸ex = 4.77 ± 0.05 eV. This result disagrees with the theoretical value of Δ𝐸 =

4.89 eV, corresponding to the excitation energy of mercury observed in the Frank-Hertz 

experiment. Using the excitation energy of mercury and the accelerating potential at the first 

oscillation, the contact potential difference between the anode and cathode materials was found 

to be 𝑉𝑐 = 1.9 ± 0.1 V. 

Introduction 

The objectives of this experiment are to determine the work function of a tungsten 

filament and to measure the excitation energy of the mercury atom. The thermionic emission of 

electrons from a tungsten filament in a vacuum tube was examined in order to determine the 

work function of tungsten. In the saturation region of the anode I-V characteristic, the anode 

current should be constant as a function of potential and should depend only on the filament 

temperature and work function according to the Richardson-Dushman equation; fitting measured 

currents and temperatures to this curve will yield the work function. When the vacuum tube is 
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filled with mercury vapor, however, the electrons can scatter off of the mercury atoms in a 

completely inelastic collision and excite the mercury at discrete energies. This periodic 

excitation results in an oscillatory anode I-V characteristic, and the periodicity can be used to 

directly measure the excitation energy of mercury. 

Theory 

Thermionic Emission 

In an electron vacuum tube, as the anode potential becomes sufficiently large so that the 

filament is no longer space charge limited, the anode current depends only on the filament 

temperature and surface area. In this saturation region of the I-V characteristic, the anode current 

is independent of the anode potential. This leads to the Richardson-Dushman equation [1,2] 

 𝐽 = 𝐴𝑇2𝑒−
𝑒𝜙
𝑘𝑇 (1) 

where 𝐽 is the emission current per unit area of the metal surface, and 𝐴 is a material-dependent 

constant, 𝑇 is the absolute temperature, 𝑘 is Boltzmann’s constant, 𝑒 is the elementary charge, 

and 𝜙 is the potential function of the metal. The quantity 𝑒𝜙 is the work function of the metal 

[2]. As the cathode temperature increases, the saturation current increases. 

Frank-Hertz Oscillations and Contact Potential 

Introducing an elastic scattering center into the electron tube, such as mercury atoms, 

which are significantly more massive than electrons, will cause electrons to scatter before 

reaching the anode, reducing the total anode current. Provided that the accelerating potential 

between the anode and cathode of the electron tube is less than the excitation energy, the 

electrons will elastically scatter. When the accelerating potential reaches the level required to 

excite the mercury atom from the 𝑆1 0 ground state to the 𝑃3 1 state [3], corresponding to an 

energy of Δ𝐸 = 4.89 eV, the scattering becomes inelastic, and the electron loses its kinetic 
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energy to excite the mercury atom. This inelastic scattering at the excitation energy causes a drop 

in the anode current. Raising the anode potential further will then cause the excitation to move 

towards the cathode, allowing the electrons to be re-accelerated, increasing the anode current. If 

the accelerating potential is sufficiently large, electrons may then experience multiple inelastic 

collisions with the mercury, resulting in an oscillatory anode I-V characteristic; this periodicity is 

direct evidence for a discrete energy level of the mercury atom. 

Two dissimilar metals used as electrodes have a contact potential difference given by [4] 

 𝑉𝑐 = 𝜙𝐴 − 𝜙𝐶 = 𝑉 − 𝑉𝑚 (2) 

where 𝜙𝐴 and 𝜙𝐶  are the potential functions of the anode and cathode, respectively, 𝑉 is the 

applied voltage, and 𝑉𝑚 is the measured accelerating potential. Then applied voltage at the 𝑛th 

peak is related to the excitation energy and the contact potential according to 

 𝑉𝑛 = 𝑛𝑉ex + 𝑉𝑐 = 𝑛 �𝐸ex
𝑒
� + 𝑉𝑐 (3) 

where 𝑉ex is the excitation potential, 𝐸ex is the excitation energy, and 𝑒 is the elementary charge. 

Apparatus and Methods 

Thermionic Emission 

 Thermionic emission was tested using a Leybold Didactic diode P, a high-vacuum tube 

containing a cathode plate, cathode filament and anode, as shown in Figure 1A. The anode 

current was measured by a Keithley 487 picoammeter connected in series to the Keithley 487 

voltage source by a triaxial cable with alligator clips. The alligator clip connection may not have 

been ideal for such a precise measurement, but the magnitude of the saturation currents were 

such that noise was not too problematic. An IGOR Pro script was used to control the Keithley 

picoammeter and voltage source as well as record the current and voltage measurements. The 

circuit schematic for the thermionic emission experiment is shown in Figure 1B. The Agilent 
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E3610A power supply was used to supply current to the cathode filament, ranging from 1.50A to 

2.00A in increments of 0.05A. For each filament current, the IGOR Pro script would produce the 

anode I-V characteristic up to 250V, and the filament temperature was measured using an optical 

pyrometer. Due to the imprecise nature of this qualitative color comparison, the uncertainty in 

the temperature is one of the largest sources of error. 

 

Figure 1 Thermionic emission vacuum tube. (A) Vacuum tube with 1. Pin socket, 2. Cathode plate, 3. Cathode filament 
(directly heated), 4. Anode, 5. Anode connecting lead; (B) the anode potential is controlled by the Keithley 487 voltage source, 
and the anode current is measured by the Keithley 487 picoammeter. The filament current is controlled by the Agilent power 
supply. 

Frank-Hertz Oscillations and Contact Potential 

The Frank-Hertz experiment was conducted using a three-electrode vacuum tube with a 

cathode, grid anode and collector electrode. The collector was connected in series with the 

Keithley 487 picoammeter, and an Agilent E3610A power supply was used to control the 

collector or bias voltage (see Figure 2). A bias voltage of around 2 to 3V was used for taking 

measurements, but it was varied from −7 to 7V for testing purposes. A second Agilent power 

supply controlled the filament current, which was typically about 0.13A but ranged from 0.10A 

to 0.20A, depending on the vacuum tube temperature. The vacuum tube was contained within a 

temperature-controlled oven to regulate the vapor pressure of the mercury. The form of the 

anode I-V characteristic also depends on the oven temperature for reasons relating to the mean 
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free path of the electrons. A thermometer was used to monitor the oven temperature, which was 

controlled using a variable autotransformer, or variac, and was typically in the range of 180℃ to 

200℃. As in the thermionic emission test, the I-V characteristics were collected using an IGOR 

Pro script. 

 

Figure 2 Schematic of Frank-Hertz experiment setup. The anode potential is controlled by the Keithley 487 voltage source, 
and the anode or collector current is measured by the Keithley 487 picoammeter. The filament current is controlled by the 
Agilent power supply, and a second power supply controls the collector or bias voltage. 

Results and Analysis 

Thermionic Emission 

The current collected in the anode is proportional to Eq. 1, since the current depends on 

factors such as the surface area of the filament and the distance between the cathode and anode, 

both of which are held constant. Then 𝑖 ∝ 𝐽, so 

 𝑖 = 𝛼𝑇2𝑒−
𝑒𝜙
𝑘𝑇 (4) 

where 𝑖 is the anode saturation current, and 𝛼 is a proportionality factor that has absorbed the 

constant 𝐴. Eq. 4 can be linearized with respect to 𝜙 by plotting ln � 𝑖
𝑇2
� versus 1

𝑇
: 

 ln � 𝑖
𝑇2
� = ln𝛼 − 𝑒𝜙

𝑘
�1
𝑇
� (5) 
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Thus, the work function can be found by either doing a direct, nonlinear fit to Eq. 4, or by doing 

a linear fit to Eq. 5. The work function in Eq. 5 will then be given by 𝑒𝜙 = −𝑘(slope), where 

the slope is the linear fit parameter. 

The saturation currents were calculated from the average of the currents for which the 

voltage was greater than the minimum saturation voltage of 𝑉sat = 100 V in the anode I-V 

characteristic. The minimum filament current for which the emission current was usable for the 

calculation of the work function was 𝐼𝐹 = 1.55A since this saturation current at 𝐼𝐹 = 1.50A was 

nearly three orders of magnitude less than the saturation current at 𝐼𝐹 = 1.55 A, while typical 

saturation currents increased by less than a single order of magnitude for each 0.05 A filament 

current increment. Thus, the point for which 𝐼𝐹 = 1.50A was discarded from the calculation of 

the work function. Any currents below 𝐼𝐹 = 1.55A produced I-V characteristics that contained 

too much noise, as shown in Figure 3; the I-V characteristics above 1.55A are shown in Figure 4. 

 

Figure 3 Minimum usable anode currents for work function calculation. Anode currents for which the filament current was 
less than 𝐼𝐹 = 1.55A were not used in the calculation of the work function. 
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Figure 4 Anode I-V Characteristics. The anode potential was raised up to 250V in 0.5V increments. Anode current saturation 
occurs in all curves by about 100V, as indicated by the dashed vertical line. Curves with higher saturation current are given by 
higher filament temperatures. 

Measurement of the filament brightness temperature were made on two separate 

occasions by different people using the optical pyrometer, and the true temperature was 

calculated according to [5] 

 1
𝑇
− 1

𝑇𝑠
= 𝑘𝜆

ℎ𝑐
ln 𝜀𝜆 (6) 

where 𝑇 is the true temperature, 𝑇𝑠 is the brightness temperature, ℎ is Planck’s constant, 𝑐 is the 

speed of light, and 𝜀𝜆 is the spectral emissivity corresponding to wavelength 𝜆. In the 

temperature range of interest, the emissivity is approximately 𝜀𝜆 = 0.44 for a wavelength of 

645 nm, corresponding to an optical pyrometer effective wavelength [5]. 
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The uncertainties in the current measurements are small compared to the uncertainties in 

the temperatures because the Keithley 487 picoammeter has accuracies on the order of 

nanoamps, while the temperature measurements have errors of roughly 30 to 60 Kelvin. 

Temperature uncertainties were estimated by finding the deviation in the optical pyrometer 

brightness that was noticeable to the user. The temperature measurement also introduces 

systematic error, since the deviation of one temperature measurement will inherently affect 

subsequent measurements in a similar way. For typical saturation currents on the order of 

microamps, the relative uncertainties are on the order of 10−4, whereas typical temperature 

measurements have relative uncertainties of roughly one to two percent. The results of these 

calculations are summarized in Table 1. 

Table 1 Thermionic emission currents and filament temperatures. The emission or anode saturation current was determined 
as a function of filament or cathode temperature. The true temperature is the corrected temperature obtained by Eq. 6 in terms of 
the brightness temperature, which was measured on two ocassions. 

Cathode current, 𝐼𝐹 (A) Anode current, 𝐼𝐴 (µA) True temperature, 𝑇 (K) 
Measurement 1 Measurement 2 

1.55A 0.86021 ± 0.00009 1570 ± 30 1730 ± 60 
1.60A 1.4473 ± 0.0001 1620 ± 30 1750 ± 30 
1.65A 2.5436 ± 0.0003 1670 ± 30 1780 ± 50 
1.70A 4.3291 ± 0.0004 1700 ± 30 1840 ± 60 
1.75A 7.0120 ± 0.0005 1740 ± 30 1850 ± 30 
1.80A 11.3141 ± 0.0008 1770 ± 30 1910 ± 50 
1.85A 18.881 ± 0.001 1810 ± 30 1960 ± 60 
1.90A 29.009 ± 0.003 1850 ± 30 2010 ± 60 
1.95A 44.884 ± 0.004 1860 ± 30 2070 ± 60 
2.00A 68.794 ± 0.005 1910 ± 30 2160 ± 60 

 

After performing both a nonlinear curve fit to Eq. 4 and a linear fit to Eq. 5 (shown in 

Figures 5 and 6), using each temperature measurement and the average temperature, the work 

functions are found using the fit parameters and are summarized in Table 2. 
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Figure 5 Nonlinear curve fit of the Richardson-Dushman equation. The two separate measurements of the filament 
temperature and the average temperature are plotted together. Their respective nonlinear curve fits (indicated by the red curves) 
and work function fit parameter are also shown. 
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Figure 6 Linear fit of the Eq. 5. The two separate measurements of the filament temperature and the average temperature are 
plotted together. Their respective linear fits (indicated by the red curves) and work function fit parameter are also shown. 

Table 2 Summary of work function results. The work functions for each temperature measurement and the average 
temperature along with the method used to calculate them. 

Fit Method 
Work function, 𝑒𝜙 (eV) 

Temperature 
Measurement 1 

Temperature 
Measurement 2 Average Temperature 

Nonlinear ordinary 
least-squares 3.7 ± 0.1 2.8 ± 0.1 3.21 ± 0.09 

Linear ordinary least-
squares 3.2 ± 0.1 3.1 ± 0.1 3.13 ± 0.05 

 

The reduced chi-squared values were calculated for each fit, and the nonlinear fit reduced chi-

squared values were all on the order of 105 to 106, while the reduced chi-squared values for the 

linear fits were from 4.9 up to 24.5. The high nonlinear fit chi-squared values are most likely 
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due to the very small uncertainties in the anode currents; on the other hand, the uncertainty in the 

linear fit dependent variable incorporates uncertainty in the temperature, which was the largest 

source of error. 

Frank-Hertz Oscillations and Contact Potential 

The excitation energy of the mercury atom from the ground state is given by Eq. 3 

according to 

 𝑉𝑛+1 − 𝑉𝑛 = (𝑛 + 1)𝑉ex + 𝑉𝑐 − 𝑛𝑉ex + 𝑉𝑐 = 𝑉ex = Δ𝐸
𝑒
⇒ Δ𝐸 = 𝑒(𝑉𝑛+1 − 𝑉𝑛) (7) 

Thus, the contact potential drops out, and the excitation energy can be calculated directly from 

the difference in applied voltages between subsequent peaks. The uncertainty in this calculation 

results from uncertainties in the voltage of the maxima or minima of the oscillation. In the 

voltage range of the oscillations (between roughly 𝑉 = 10V and 𝑉 = 50V), the Keithley 487 

voltage source has a maximum accuracy of about 54 mV for a relative uncertainty of about 0.1 

percent. This uncertainty in the Keithley voltage is typically about 20% of the voltage step sizes 

(Δ𝑉 = 250 mV) and does not exceed the step sizes, so the limiting factor in our voltage precision 

is the step size. A sample Frank-Hertz oscillation is shown in Figure 7. 
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Figure 7 Sample Frank-Hertz Oscillation. This anode I-V characteristic displays the oscillations that give evidence for discrete 
energy levels of the mercury atom. The 𝒏th peaks are labeled as shown. This measurement was taken at 205℃ with a +3.0V bias 
and 130 mA filament current. 
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Table 3 shows the calculated periods of each of the Frank-Hertz oscillation curves at each peak. 

Table 3 Frank-Hertz Oscillation Periods. The differences in peak maxima were calculated between each available peak for 
various bias or retardation voltages between the grid anode and collector. Measurements were carried out with a filament current 
of 130 mA at a temperature of 200 to 205℃. Peaks that were not distringuishable were not included. 

Bias Voltage 𝑉𝑛+1 − 𝑉𝑛 (V) for peak 𝑛 
𝑛 = 5 𝑛 = 6 𝑛 = 7 𝑛 = 8 𝑛 = 9 

−3.0 V  4.6 ± 0.3 4.6 ± 0.3 4.8 ± 0.3 5.2 ± 0.3 
 4.80 ± 0.07 4.40 ± 0.07 5.10 ± 0.07 5.10 ± 0.07 

+2.0 V 4.3 ± 0.4 4.5 ± 0.4 4.8 ± 0.4 5.0 ± 0.4 5.0 ± 0.4 
4.3 ± 0.4 4.8 ± 0.4 5.0 ± 0.4 5.0 ± 0.4  

+3.0 V 

4.8 ± 0.4 4.5 ± 0.4 4.8 ± 0.4 5.0 ± 0.4 5.0 ± 0.4 
4.3 ± 0.4 4.8 ± 0.4 4.8 ± 0.4 4.8 ± 0.4 5.3 ± 0.4 
4.5 ± 0.4 4.5 ± 0.4 4.8 ± 0.4 4.8 ± 0.4 5.3 ± 0.4 
4.8 ± 0.4 4.5 ± 0.4 4.8 ± 0.4 5.0 ± 0.4 5.0 ± 0.4 
4.3 ± 0.4 4.8 ± 0.4 4.8 ± 0.4 4.8 ± 0.4 5.3 ± 0.4 

 4.5 ± 0.7 5.0 ± 0.7 5.0 ± 0.7 5.0 ± 0.7 
 4.3 ± 0.4 5.0 ± 0.4 4.5 ± 0.4 5.0 ± 0.4 
 4.8 ± 0.4 4.8 ± 0.4 5.0 ± 0.4 5.0 ± 0.4 
 4.5 ± 0.4 5.0 ± 0.4 4.8 ± 0.4 5.0 ± 0.4 
 4.5 ± 0.4 4.8 ± 0.4 5.0 ± 0.4 5.0 ± 0.4 
 4.5 ± 0.4 4.8 ± 0.4 4.8 ± 0.4 5.0 ± 0.4 
 4.3 ± 0.4 5.0 ± 0.4 4.8 ± 0.4 5.3 ± 0.4 
 4.5 ± 0.4 4.8 ± 0.4 4.8 ± 0.4 5.3 ± 0.4 
 4.5 ± 0.4 4.8 ± 0.4 4.8 ± 0.4 5.3 ± 0.4 
 4.3 ± 0.4 5.3 ± 0.4 5.0 ± 0.4 4.8 ± 0.4 
 4.5 ± 0.4 4.8 ± 0.4 5.0 ± 0.4 5.0 ± 0.4 
  4.8 ± 0.4 4.8 ± 0.4 5.3 ± 0.4 
  4.8 ± 0.4 4.8 ± 0.4 5.3 ± 0.4 
  4.8 ± 0.4 5.0 ± 0.4 5.0 ± 0.4 
  4.8 ± 0.4 4.8 ± 0.4 5.3 ± 0.4 
  4.8 ± 0.4 5.0 ± 0.4 4.5 ± 0.4 
  4.8 ± 0.4 4.8 ± 0.4 5.0 ± 0.4 

Average 4.5 ± 0.2 4.55 ± 0.09 4.83 ± 0.08 4.88 ± 0.08 5.09 ± 0.08 
 

Finally, the average over all peaks and all I-V characteristics is 𝐸ex = 4.77 ± 0.05 eV. The 

contact potential difference can also find using Eq. 3 in the form 𝑉𝑐 = 𝑉𝑛 − 𝑛𝑉ex. The applied 

voltage is 𝑉𝑛 = 6.7 ± 0.1 V at the 𝑛 = 1 maximum (see Figure 8), so using the excitation 

potential 𝑉ex = 4.77 ± 0.05 V, the contact potential is 𝑉𝑐 = 1.9 ± 0.1 V. 
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Figure 8 Frank-Hertz Oscillation Peak 1. The first observed peak, corresponding to a single excitation of mercury by electrons, 
was obtained using low temperatures and low bias voltages to allow the electrons to more easily reach the collector with a small 
accelerating potential. 

Discussion and Conclusions 

Thermionic Emission 

The theoretical value for the work function of a tungsten filament is 4.5 eV, but can vary 

as much as 4.32 to 5.22 eV, depending on factors such as crystal orientation [6]. Since the 

reduced chi-squared values for the nonlinear fits were significantly greater than one, the values 

of the work function found using the nonlinear least-squares curve fit may be inaccurate. Thus, 

the linear least-squares regression should have more accurate work function estimates. The linear 

fit with the smallest reduced chi-squared was obtained by fitting the average temperature values, 
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and the resulting work function from this fit was found to be 𝑒𝜙 = 3.13 ± 0.05 eV. This value is 

in disagreement with the theoretical value of 4.5 eV for a typical filament, since it is not within 

the uncertainty of the work function. 

Most of the uncertainty in the measurements and calculation of the work function results 

from the temperature, which in both Eq. 4 and 5 is in the independent variable, making an 

ordinary least-squares (OLS) approach inferior to an orthogonal distance regression (ODR). The 

dependent variables in Eq. 4 and 5 have very little uncertainty compared to the independent 

variables—temperature and inverse temperature—as can be seen by Figures 5 and 6, and the 

uncertainty in the independent variable gets lost by the OLS method. Thus, to account for the 

uncertainty in the independent variable, an ODR fit method would be more appropriate and 

would propagate the error to the fit parameter more appropriately. Then the work function fit 

parameter may become more accurate while sacrificing some precision by using an ODR 

method. 

Frank-Hertz Oscillations and Contact Potential 

The excitation energy of Δ𝐸 = 4.89 eV is not within the uncertainty of the averaged 

excitation energy 𝐸ex = 4.77 ± 0.05 eV, but it is within the uncertainty of the 𝑛 = 7 and 𝑛 = 8 

peaks with energies of 4.83 ± 0.08 eV and 4.88 ± 0.08 eV, respectively. The 𝑛 = 5, 6, 9 peaks 

are not within their uncertainties of the expected excitation energy, though. A possible 

explanation for this discrepancy is given by Rapior et al. [7], where they show that the spacing 

between minima increases linearly with minimum order 𝑛, due to the larger electron energy gain 

along their mean free path, and that the lowest excitation energy 𝐸𝑎 corresponds to the minima 

spacing extrapolated to 𝑛 = 0.5, as shown in Figure 9. 
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Figure 9 Spacing between minima in the Frank-Hertz experiment [7]. Measurements of the spacing between the 𝑛 and 𝑛 − 1 
minimums were made at four temperatures, and the linear fits (solid lines) are also shown. 

Further, Rapior et al. go on to suggest that measuring the spacing between minima is 

more appropriate than measuring spacing between maxima of the oscillations. However, because 

measurements were taken at approximately 200℃, the variations in the maxima separation with 

peak number are small compared to voltage uncertainties, so using minima spacing would not 

likely have improved the results significantly. Nonetheless, future measurements should 

probably be done on the minima spacing, as indicated by Rapior et al. By taking so many peak 

measurements, the uncertainty was reduced by about 80% after taking the average period for 

each peak, but the accuracy and precision of the results could be improved by decreasing the 

step-size of the applied voltage. The quality (i.e. smoothness or noisiness) of the I-V 

characteristics is also dependent on vibrational motion of the experimental apparatus, so efforts 

should be made to reduce the amount of vibrations around the experiment. 

Reducing the bias or retardation voltage between the grid anode and collector, thus 

increasing the collector potential, increased the overall magnitude of the anode current since the 

electrons are decelerated less or accelerated more between the grid and collector. On the other 
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hand, a positive bias voltage filtered out electrons with insufficient energy to pass through the 

retardation potential and reach the collector. At higher temperatures, the electrons have a smaller 

mean free path, so a lower bias voltage was required to allow the electrons to reach the collector, 

and higher anode voltages could be reached without igniting the mercury to produce several 

smooth oscillations. Additionally, as Figure 9 indicates, the spacing between peaks varies less 

with the peak number at higher temperatures. Conversely, low temperatures caused ignition of 

the mercury vapor around 𝑉 = 25V applied voltage and thus required a smaller filament current; 

the smaller filament currents results in fewer emitted electrons. 

The monotonic rise in the current superimposed on the oscillations is due to the larger 

potential between the anode and cathode accelerating more electrons that do not necessarily 

collide with mercury atoms. Thus, an increasing number of electrons reach the collector as anode 

potential increases, increasing the overall anode current. As already indicated, the peaks in the I-

V characteristic also do not have the same spacing. These effects may be reduced by changing 

the design of the vacuum tube parameters such as the mercury vapor density, and distance 

between the anode and cathode [3]. 

Summary 

The work function for tungsten found using thermionic emission, 𝑒𝜙 = 3.13 ± 0.05 eV, 

disagrees with the  reference value of 4.5 eV for a typical tungsten filament. The linear fits had 

better reduced chi-squared values than those of the nonlinear fits, but both fit methods neglected 

uncertainties in the independent variables, which may have resulted in an underestimate in the fit 

parameter errors. Thus, an orthogonal distance regression may be a more appropriate fitting 

method in this case. In the Frank-Hertz experiment, the separation between I-V characteristic 

peaks depends on the peak number, so while the separation between some individual peaks 
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agreed with the theoretical excitation energy Δ𝐸 = 4.89 eV, the average excitation energy 

𝐸ex = 4.77 ± 0.05 eV disagrees. Better accuracy and precision in the measurement of the peak 

separation and thereby the excitation energy can be obtained by using smaller applied voltage 

step sizes. 
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